A single growth cone is capable of integrating simultaneously presented and functionally distinct molecular cues during target recognition.
نویسندگان
چکیده
A variety of cell recognition pathways affect neuronal target recognition. However, whether such pathways can converge at the level of a single growth cone is not well known. The RP3 motoneuron in Drosophila has previously been shown to respond to the muscle cell surface molecules TOLL and fasciclin III (FAS3), which are normally encountered during RP3 pathfinding in a sequential manner. TOLL and FAS3, putative "negative" and "positive" recognition molecules, respectively, affect RP3 antagonistically. Under normal conditions, TOLL and FAS3 together improve the accuracy of its target recognition. Here, we show that, when presented with concurrent TOLL and FAS3 expression, RP3 responds to both, integrating their effects. This was demonstrated most succinctly by single cell visualization methods. When a balance in relative expression levels between the two antagonistic cues is achieved, the RP3 growth cone exhibits a phenotype virtually identical to that seen when neither TOLL nor FAS3 is misexpressed. Thus, growth cones are capable of quantitatively evaluating distinct recognition cues and integrating them to attain a net result, in effect responding to the "balance of power" between positive and negative influences. We suggest that the ability to integrate multiple recognition pathways in real-time is one important way in which an individual growth cone interprets and navigates complex molecular environments.
منابع مشابه
A sequence of targets toward a common best practice frontier in DEA
Original data envelopment analysis models treat decision-making units as independent entities. This feature of data envelopment analysis results in significant diversity in input and output weights, which is irrelevant and problematic from the managerial point of view. In this regard, several methodologies have been developed to measure the efficiency scores based on common weights. Specificall...
متن کاملLaminin directs growth cone navigation via two temporally and functionally distinct calcium signals.
During development, growth cones navigate to their targets via numerous interactions with molecular guidance cues, yet the mechanisms of how growth cones translate guidance information into navigational decisions are poorly understood. We have examined the role of intracellular Ca2+ in laminin (LN)-mediated growth cone navigation in vitro, using chick dorsal root ganglion neurons. Subsequent to...
متن کاملSubstrate-cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance.
Growth cones are highly motile structures at the end of neuronal processes, capable of receiving multiple types of guidance cues and transducing them into directed axonal growth. Thus, to guide the axon toward the appropriate target cell, the growth cone carries out different functions: it acts as a sensor, signal transducer, and motility device. An increasing number of molecular components tha...
متن کاملTouch and go: guidance cues signal to the growth cone cytoskeleton.
Growth cones, the highly motile tips of growing axons, guide axons to their targets by responding to molecular cues. Growth cone behaviors such as advancing, retracting, turning and branching are driven by the dynamics and reorganization of the actin and microtubule cytoskeleton through signaling pathways linked to guidance cue receptors. Actin filaments play a major part in growth cone motilit...
متن کاملRegulation of growth cone actin filaments by guidance cues.
The motile behaviors of growth cones at the ends of elongating axons determine pathways of axonal connections in developing nervous systems. Growth cones express receptors for molecular guidance cues in the local environment, and receptor-guidance cue binding initiates cytoplasmic signaling that regulates the cytoskeleton to control growth cone advance, turning, and branching behaviors. The dyn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 12 شماره
صفحات -
تاریخ انتشار 1999